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INTRODUCTION 

LET us first state the main result of this paper. Let cp : [0, co) + [0, 00) be nondecreasing, locally 
Lipschitz and q(O) = 0. Let us consider the problem 

m I t4 E L’((0, T) x RN) n L”((z, T) x RN), Vt E (0, T), 

u, - A&) = 0 in .Q’((O, T) x RN), 

where ‘in g’((O, T) x RN)' means ‘in the sense of distributions in (0, 7) x RN'. 

(1) 

(2) 

THEOREM 1. Let u and ri be two nonnegative solutions of(P). If N = 1 or 2, assume also that q(u), 
rp(li) E L’((0, T) x RN). Then 

lim ess u(t) - fi(t) = 0 in .9'(RN) (3) 
110 

implies t4 = ti. 

A lot of papers have already been concerned with the uniqueness of the solutions of problem 
(2) especially in the particular case of the porous media equation u, - Au” = 0. See, for example, 
Oleinik [19], Kalashnikov [12], Gilding and Peletier [lo], Kamin [133 for one space variable, 
Vol’pert and Hudjaev [22], Sabinina [20] and finally Brezis and Crandall [6] in the general 
case. In the latter work which recovers most of the previous uniqueness results contained in the 
above, the initial value is assumed to be in L'(R") (or. ZY(RN)) and (3) holds in L'(RN). 

Here the initial value is only a finite measure which is the limit of u(t) in the sense of measure 
(only !)-its existence is implied by (1) and (2) (see Lemma 2). This leads to a more sophisticated 
analysis whose main difficulty is solved by using precise properties of the potentials of the func- 
tions u(t) for N 2 3. A different proof for N = 1,2 is necessary due to the non-existence of 
potentials; it requires p(u) E L’ which is in fact implied by (1) and (2) in the cases of interest (see 
Remark 3 and Theorem 4). Among the uniqueness results mentioned above, only Kamin in [13] 
considers the case of a measure as initial data in the particular case of dimension 1 with a Dirac 
mass. 

* This work was sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and supported 
in Part by the National Science Foundation under Grant No. MCS79-27062, ‘0 U.S. Govt. 

t New address from August 1981: Universitt Scientifique et Medicale de Grenoble, lnstitut de Mathtmatiques Pute~, 
B.P. 116,38402_Saint-Martind’Heres, France. 
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Here our proof is quite general and not particular to RN. It would carry overto equation (2) 
in a bounded domain rZ of RN with Dirichlet or Neumann boundary conditions. 

Section 1 is devoted to the proof of Theorem 1. In Section 2, we state an existence theorem for 
solutions of (P) whose initial value is a given nonnegative finite measure. We also study the 
dependence on the initial data. 

Some last comments about motivations. Equation (2) arises in many applications. We will 
not recall them here since they can be found in most of the papers mentioned above or in the 
references they contain (see also [18] for a survey about the porous media equation). The case 
when the initial datum is a measure is also a model for physical phenomena (see [13] and [23, 
p. 6771). Moreover it arises in several mathematical questions. One example is the study of the 
asymptotic behavior for the solutions of the porous media equation which can be reduced to 
the uniqueness problem with a Dirac mass as initial data (see [ll] and [15]). 

SECTION 1 

We denote by Cc(RN) (resp. C&RN)) the set of continuous functions on RN with compact support 
(resp. bounded) and by &RN) (resp. &i’+(RN)) the set of finite (resp. and nonnegative) Radon 
measures on RN. A sequence pL, c k(RN) is said to be converging to ~1 in o(dl(RN), Cc(RN)) (resp. 

44RN), C,(RN))) f, f i or any (P’E C,(RN) (resp. cp E C&RN)) 

;_~-/dh =lRNdp_ 

Case N 2 3. Let E,(x) = l/(iV - 2)SN(xIN-2 where S, is the surface of the unit 
U, fi solutions of(P) we denote 

a.e. t E (0, T), v(t) = EN * u(t), B(t) = EN * ii(t). 

Since u(t) E L’(RN) n I.“(RN), u(i) E C&RN) n Lp(RN) for p > N/(N - 2). (This 
elementary properties of the convolution in RN.) 

N-sphere. For 

follows from 

LEMMA 2. If u is a nonnegative solution of (P), u(t) converges in o(A(R”), C&RN)) to some 
p E .M’(RN) when t + 0 essentially. Moreover when t decreases to 0, u(t, x) increases to ~(0, x) = 
(E, * p)(x) for all x E RN. 

(Note that ~(0, x) is lower semi-continuous and is the usual potential of the finite measure p.) 

ProofofLemma 2. The relation (2) implies that 

a.e. 0 < s G t < 1; u(t) - u(s) = A J ’ cp(u(a)) da in 9’(RN). (4) 
s 

This is easily obtained by multiplying (2) by test-functions a,(t) O(x), 8 E 9(RN) and a,(t) E 9(0, T) 
converging to 1 ts, 1l in a suitable way. Note that the assumptions on cp together with (1) imply 

cp(u) E L’((r, T) x RN) n a!?((~, T) x RN), Vr E (0, 7). (5) 

Actually the relation (4) defines u(t) for all t E (0, T]. Moreover since u(t) - u(s) and ff, cp(u(a)) da 
EL!(RN),forallO<s< t< T: 

JR/ = JR/w, (6) 



Uniqueness of the solutions of u, - A&u) = 0 with initial datum a measure 177 

u(t) - u(s) = E, * A ( l&(“))d+ = -J‘: +(a)) da < 0 a.e. on RN. (7) 

In (7) we use a uniqueness result (see, e.g., [4, Lemma A.53). 
Relation (6) implies the relative compactness of {u(t); t E (0, T)) in a(.M(RN), C,(RN)). The 

monotonicity proves the uniqueness of the limit p of u(t) and the second part of the lemma (see, 
e.g., [17, Theorems 0.6, 3.8 and 3.9 about potentials of measures]). Moreover 

o(t) < v(0) * jRN-Ar(t)+Aa(0). 

Hence IRN u(t) converges to IRN - Au(O) = JaN dp and u(t) converges to p in a(.M(RN), C&RN)). 

Proof ‘Theorem 1 for N 2 3. Let h E 10, T[ be fixed. If u and ii are solutions of(P), by (4) we have 

vo<s<r<t+h<rI; 

(u(t) - fi(t + h)) - (u(s) - ii(s + h)) = A 
s 

’ [q+(o)) - q(fi(o + h))] do. (8) 
s 

Letting s go to 0 gives in 9’(R”): 

(u(t) - ti(t + h)) - (p - ii(h)) = A 
s 

’ [c&(o)) - cp(ti(a + h))] do. (9) 
0 

Remark that s I-+ J: +(a)) d CJ is nondecreasing and A j: cp(u(o)) do is bounded in I!(RN). By the 
results in [4] (Lemma A.5), it converges in L&,(RN) to & &.&)) do. Let us denote 

s(r) = 
s 

’ [q(u(n)) - cp(ti(o + h))] da + O(h) - u(0). 
0 

Then (9) can be written as 

u(t) -.ri(t + h) = Ag(t) (og(t) = s(t + h) - u(t)), 

where u(t) is defined in Lemma 2. This implies 

g,(t) = a(t) A&), 
where 

(10) 

cp(uk 4) - cp(W + h, 4) 
u(t, x) - ii(t + h, x) 

if u(t, x) # ti(t + h, x) 

0 if u(t, x) = ii(t + h, x). 

The function a is nonnegative and is in L”((z, T) x RN) for any T E (0, T). Hence g is solution of a 
linear equation; moreover if l$ u(t) = 2~ ii(t), g(0) = 8(h) - u(0) is nonpositive by Lemma 2. 

If a( .) were regular enough, by the maximum principle applied to (10) we would obtain 

VO < t < t + h < T, g(t) = B(t + h) - u(t) < 0. (11) 

And that would imply D < u, and, by a symmetric argument B = u and ii = u. What follows is to 
justify this maximum principle for equation (10) in our particular case. The method consists in 
multiplying (10) by the solution J/ of the dual problem $, + A(+) = 0, +(T) = 6 E 9’(RN), 
0 < T + h < T which formally gives 
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(9’(RN) denotes the space of nonnegative Cm-functions with compact support in RN). 

Then, we show that the right-hand side has a nonpositive limit when s ---) 0. The first step is 
to “solve” the above equation. For this let us approximate a by apt P([O, T] x RN), nonnegative 
and satisfying: 

up, (Vu,/, Aa, are bounded on [0, T] x RN for any p, 

Vr E (0, T), up is bounded on [r, T) x RN independently of p, 

aP converges to a a.e.(t, X) E (0, T) x RN. 

(For instance, one can mollify a and multiply by a P-function equal to 1 for 1x1 < p and equal 
to 0 for 1x1 2 p + 1.) 

Then, E > 0 being fixed we consider the dual problem 

& $, + A(&, + a&,) = 0, &,( 5 = 8 E 9 '(RN), (12) 

where 0 c T + h < T. For simplicity we still denote T by ZY It is well-known that this problem 
has a nonnegative P-solution such that tP(t) E L'(RN) n P(RN) for all t (see [16]). 

Now, multiply equation (10) by ijP and integrate to obtain: 

In order to pass to the limit inp for s E (0, T), let us make some estimates on $,,. For convenience 
we denote 

H,(t) = EN * I/@ (* - BP(t) = &it)). 

Multiplying (12) by HP(t) gives 

(14) 

This proves that tip is bounded in L?(O, T; RN); it has a subsequence weakly converging to tie. 
Then (a, + &)I&, also weakly converges to (a + E)$~ in L?((r, T) x RN) for any z E (0, T). Hence 
the limit $, satisfies, in .9'(RN), an integrated form of (12), namely 

VO < s < t G T $,(t) - It/,(s) = -A 
s 

‘(a + E)$,. 

since lRN +,(t) = jRN 0, $,(t) is b ounded in L'(RN). Hence +, isln L'(RN) and by (15) 

(15) 
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j-,/t) = 6.0. (16) 

Moreover, one can assume that $,(t) converges to $,(t) in a(&(RN), C&RN)) for all t > 0. 
Now (13) becomes: 

(17) 

(Remember that Ag(t) = u(t) - ti(t + h) is bounded in any L!‘((s, T) x RN) and up converges to a 
a-e. on (s,T) x RN and is uniformly bounded.) 

Now we let E + 0. For any s E (0, T), the right-hand side of (17) is bounded by 

E II Ag II Lm((s,f)xRN) ' 
1 
' /tkk%(RN)~ 
J 

which converges to 0 since $, is bounded in L”(0, T, L’(RN)) by (16). If HE(t) = E, * t+?,(t), in- 
tegrating (15) gives 

H&t) - q(s) = 
s 

f (a + &)I/$ 
s 

By the nonnegativity of $, and Hz this implies 

0 < HE(t) d H,(T) = E, * 0. 

Hence He is bounded in E((0, T) x RN) for p > N/(N - 2) and one can find convex combinations 
of these H, converging a-e. and strongly to H in Lp((0, T) x RN) for some p E (N/(N - 2), a). 
Since $,(s) is uniformly bounded in L1(RN). we can assume that the same combinations of $ (s) 
converge a.e. s in a(.M(R”), Cc(R*)) to V(S)E A”(RN). In order to pass to the limit in (17), we need 
a convergence in a(.M(RN), C&RN)). This comes from the fact that 

Indeed, for any s E (0, I), j,’ (a + s)tjE is bounded in L’(RN). Hence, by (15) there exists 
p(s) E A”(RN) such that 

8 - v(s) = -A@) in Q’(RN). 

This together with (16) implies (18). 
We finally obtain the existence of a family of nonnegative finite measures (v(s), SE (0,T)) 

such that 

V,,(a>T){R~Y(T)e = lRN&)dV(S) 

and 

s I-+ H(s) = E, * v(s) is nondecreasing on (0, T). 

((20) comes from the monotonicity of H,.) 
Now, y(s) = 8(s -I- h) - u(s); by the monotonicity results of Lemma 2, (19) gives 

(19) 

(20) 
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vo < s < so, 

(W - %J) dv(s) = jRM @(h) - u(s,))H(s). 
(21) 

(See the remarks below for the integration by parts.) But JRN dv(s) is bounded independently of 
s and H(s) decreases pointwise when s decreases to 0. Hence v = - M(O+) E JZ’(RN) and by (21) 

vo < so, 

jRN YUY i jRN (ii(h) - u(s,))H(Of) = jRN W) - ds,,)) dv. I 
Now letting so decrease to 0 gives by monotonicity 

[RNU)e G ~RN(6(h) - u(O))dv. 

But ~(0, x) = 6(0, x) > B(h, x) for all x E RN. Hence 

VB E 9 +(RN), 
s 

y(T)8 < 0. 
RN 

This implies the relation (11) we were looking for. 

(22) 

(23) 

Remark 1. In the above we often use the fact that given p, v E A’(R”): 

s 
(E,*p)dv = 

RN i 
(EN * v) dH 

RN 
(24) 

whatever this integral is finite or not. In (22), H(O+) is the decreasing limit of the potentials H(s). 
It is generally not a 1.s.c. potential itself but is equal ax. to EN * v. Since ii(h) - z&J is a “good” 
function, the integration by part works. It would not for h = 0, for G(O) is only a measure (see, 
e.g., [17] for more details). 

Remark 2. The same method would give a similar uniqueness result for the equation 

i 

a, = Acp(u) in 9((0, T) x Q), 

‘cp(u) = 0 on ai2 

4) + P in 4JWN), C,(RNN, 
with R a regular bounded open subset of RN, by using the ‘potentials’ u(t) solutions of 

i 

-Au(t) = u(t), 

u(t) = 0 on as1 

This method would clearly contain the cases IV = 1,2. 

Remark 3. There is no potential in RN if N = 1.2. Hence we have to do the above computations 
in an ‘approximated’ way using the solutions of 
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au,(t) - Au&) = u(t), 

and letting tl go to 0. This requires more a priori assumptions on the solution II, namely 
C&J) E L’((0, T) x RN). This is implied by (1) and (2) in most cases of interest, like the porous media 
case q(r) = J” (see Theorem 4) or the Stefan problem case q(r) = (I - l)+ (since u E L’((0, T) 
x RN)). It was also proved in [14], that this always holds in dimension 1 with very weak assump 
tions on cp. 

Proof of Theorem 1 for N = 1,2. Since there is no potential in RN if N = 1,2, we will use the 
solutions of 

Vt > 0, au,(t) - Au,(t) = u(t), c&,(t) - AC,(t) = I(t). (25) 

For a > 0, (a - A)- l is a ‘good’ operator even when N = 1,2 and in particular (see, e.g., [4, 
Lemma 1.11): 

u(t) E L?(RN) n Lm(RN) =S u,(t) E L!(RN) n C&RN). 

We will denote K, the kernel associated with (a - A)-‘, i.e., u,(t) = Kx * u(t). The result corres- 
ponding to Lemma 2 is: 

LEMMA 3. If u 2 0 is a solution of (P), u(t) converges in a(.M(RN), C,(RN)) to some PE .M’(RN) 
when t + 0. Moreover when t decreases to 0, u,(t, x) + aKDl * J; cp(u(o)) da increases to Km * 01 + 
a {h &(a)) da(x)) for all x E RN and all z E (0, T). 

Note that for z E (0, T) fixed, K, * j; du(a)) da is continuous and when t decreases to 0, it 
increases to the 1.s.c. function KII * 1; cp(u(a)) da which is well-defined since r0 cp(u(a)) da E L!(RN) 
by assumption on rp. 

If w,(t) = u.(t) + aK, * 1; cp(u(a)) da, we have for 0 < s < t: 

w,(t) - w#) = KOI *(u(t) - 4s) - a~‘p(u(4)da) 

=K=* (A-a) ( [q(u(a))da) = -[+(a))da < 0 a.e. 

This proves the second part of the lemma. Then we finish as in L,ernma 2 using that 

JRNU(t) = h.au/t)-~R.au~(0) = lRNdp. 

Now to replace the function y of the previous proof, we introduce for h > 0 fmed: 

(26) 

Ll&) = 
s 

’ G(a) da + B,(h) - u,(O) - a(a - A)-’ 
0 

where we denote G(a) = cp(u(a)) - &?(a + h)). Then we verify 

(a - Ati,(t) = ii(t + h) - u(t) (og,(t) = B,(t + h) - u,(t)), 

gal + u(a - A)&) = -a(a - A)-‘G(t) < aKE * q@(t + h)), (27) 
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where a is defined in the previous proof. 
Now, we do the same computations as for N > 3 with the operator a - A instead of -A 

and we obtain-like in (19) and (20~the existence of {v=(s) E J4+(RN); s E (0, T)} such that, for 
kB+(RN): 

s +P H=(s) = Ka * v,(s) is nondecreasing on (0, T). 

(28) 

(29) 

Y,(S) G a,(h) + a& * s ’ @(a + h)) da 
0 1 

- va(so) + a&*i:p(u(a))da] + a&*[G(a)da. (30) 

Now we can pass to the limit when s + 0 as in (22). The last term of (30) is easily controlled after 
integration by part. 

iiiii s Y,(S) dva(s) 
~10 RN 

< S[ B,(h) + aK, * 
s 

’ rp(G(a + h)) d a 

RN 0 

- u,(so) - a&*[ dW)da]dva 

with v. = lim v&s) and HII = Km * va a.e. We let so decrease to 0 above, use the monotonicity 
S10 

established in Lemma 3 to obtain 

Finally, coming back to (28) and remarking that H&s) < H=(T) = KII * 8 we have, for any 
6~ .9+(RN), 

Hence 

s T+h 

Y,(T) d a& * cpH-4 da. 

0 
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Now we let h, then a go to 0. For any f E L?(@“), aw, = aK, * f converges to 0 in 9’(RN) when 
a -+ 0. Indeed, JRN awDl = jRN f implies the convergence of anwm to some v E .&“(RN). The relation 
a2w, - A(awJ = af implies that Av = 0. Hence v = 0. Coming back to the definition of g,(T), 
we obtain 

s 

T 

444) - rpWN G 0. 

0 

This completes the proof. 

Remark. Thanks to Lemmas 2 and 3, the condition (3) in Theorem 1 can be weakened to the 
requirement 

lim 5 
1 

“(u(t) - G(t)) dt = 0 in 9’(RN). (3) 
hJ0 0 

This may be useful in view of the existing literature where the solutions are often defined as func- 
tions u satisfying (1) and 

T 

ss 
Mt + WI A$ + 

s 

40) d40) = 0 

0 RN RN 

for any II/ E C;([O, T[ x RN). Clearly two solutions u and li of the above satisfy (2) and (3)‘. 

SECTION 2 

Existence results and dependence on the initial data. 

THEOREM 4. Let m 2 1 and p E AZ’(RN). Then there exists a unique nonnegative u E C((0, co); 
L’(RN)) A L”((z, co) x RN) for all T > 0 such that 

l+=Au’” in .9’((0, co) x RN) (31) 

u(t) + p in a(A(RN), C,(RN)) when t JO. (32) 

If ii is another such solution with initial data p E .dl+(RN) 

Vt E (07 a) RN b(t) - li(t)l G 
s s 

RN IP - PI. (33) 

Moreover, if P,E A’(R”) converges to P in o(d(RN), C&RN)), the associated solutions u.(t) 
converge to u(t) in II_? for all t > 0. 

Remark 4. Ifp is the Dirac mass 6 at the origin, the solution of (31), (32) has been explicitly deter- 
mined (see Barenblatt [2]). It is given by 

u(t,x)= t-k 
k(m - 

a - 
1)x 

2mNflN 

wherek-’ = m - 1 + (2/N) and a is a constant depending on m and N in such a way that IRN u(t) 
= 1. 

Remark 5. The proof of the above result contains several ingredients. First the existence of a 
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solution to (31) when the initial data is regular. This was proved in [20]. It can also be obtained 
as a consequence of the abstract theory of evolution equations governed by accretive operators 
which carries over to the more general equation (2) (see [5]). Then, approximating ,u by ‘regular’ 
functions pLn, one has to prove that the solution of (31) with initial data cf, converges to the solution 
of (31~(32). This needs some compactness arguments that can be obtained through two different 
ways. One can use that 

as proved in [l]. Actually this method would apply to (2) for the general class of functions cp 
described in [S]. Here we will use, in conjunction with some direct estimates in (31), the L”- 
regularizing effect which says that the solution of (31) belongs to L”((T, 00) x RN) for any t > 0. 
The latter property-which is needed to apply our uniqueness result-is also true for equation 
(2) with very weak assumptions on cp. To illustrate the generality of this method let us establish, 
at least for N > 3, a more general existence result. 

Let us consider cp : [0, 00) + [0, co) locally Lips&&, nondecreasing, ~(0) = 0. Assume 
N B 3 and for instance (see [3]): 

Then we have: 

N-2 
3a > 7 such that ((p(r))lla is convex for r large. (34) 

PROPOSITION 5. For all p E &‘(RN), there exists a unique nonnegative u E L”((0, a~); L’(RN)) 
n L”((r, 03) x RN) for all r > 0, solution of 

U, = Acp(u) in 9’((0, co) x RN) 

u(t) + p in o(JZ(RN), C,(RN)) when t JO. 

Moreover the estimate (33) holds. 

Remark 6. Assumption (34) insures that u E L”((r, co) x RN) for r > 0. A slightly different assump- 
tion can be found in [21]. 

Proof of Proposition 5. Let ,un E L’(RN) nonnegative and converging to ~1 in o(dZ(RN), C&RN)). 
By the existence results in [5] and the L”-regularizing effects established in [3], there exists 
u, E C([O, co); L?(RN)) n L”((r, co) x RN) for any 7 > 0 such that 

U nt = A&,) in 9((0, co) x RN) (35) 

u,(O) = p,, 

Il%(t)lI ,,GK+ 5, 
( > 

Y 

t 
K&Y > 0, (36) 

where K, ,K,, y depend only on (I&.,, a, cp and N. Remark that Us is uniformly bounded in 

C([O, 03); L’(RN)) since I,* f!,,(r) = JRN pLn by (35). Let us make some formal estimates now. 
Multiplying (35) by cp (uJ, yrelds: 
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(37) 

Multiplying (35) by cp(u,) and integrating give for 0 < r < t 

J’J IV&J2 = JR. @(u,(r)) - ~(%(0)~ (38) 
z RN 

where I,@) = ji q(o) da. Since u,(7) is bounded in L” independently of n (see (36)), this implies 
that V&J is uniformly bounded in Eioc((O, co) x RN). By (37) Vcp(uJ is even uniformly bounded 
in L”(7, co; L?(RN)) for any 7 > 0. Hence, integrating (37) proves that f,” IRN u,~‘~(u,)~ is bounded 
for any 7 > 0. Since rp is locally Lipschitz, we obtain that {,” fRN [p(uJ,]’ is bounded. Finally we 
deduce that 

cp(u,) is bounded in W,id2((0, co) x RN) 

the bound depends only on s;p ((,u~(( 1. 
1 

(39) 

The formal computation (38) can be justified like in [5, Proposition IO]. For the other ones, we 
use cp(u(t + h)) - cp(u(t)) and let h go to 0. 

By (39), there exists a subsequence (still denoted cp(u,)) converging in ~?,_((0, co) x RN) and 
a.e. to some w. On the other hand, a subsequence of an converges weakly in E(K) for any compact 
K c (0, c;o) x RN and the limit u satisfies w(t, x) = cp(u(t, x)) a.e. since cp is a maximal monotone 
operator in E(K) (see [7, Proposition 2.51). Clearly 

u E L”(0, IT; L!(RN)) n Lm((7, co) x RN) 

for all 7 > 0 and satisfies 

u, = A&u) in g’((O, co) x RN). 

It remains to show that /2 = lim:;s u(t) (in c$.A(RN), C,(RN))) which exists by Lemma 1, is equal 

to p (note that 1 dfi G j dp). 

For this, let us assume we have chosen pn = p * p, with P,(X) = I,izNp (n/xl), Vx E RN where 
p E Coo([O, co)] is supported in [0, l] and 2, is a constant such that Jav p,, = 1. With this choice 
(see [17]) n + vfl = EN * p,, is nondecreasing (and t$’ increases pointwise to u” = EN * p). Hence 

n --* v,(t) = EN * u.(t) is nondecreasing. 

Indeed z;.(t) is a solution of tint + cp( - Au,) = 0, v&O) = uz and one can use the maximum principle 
for this equation (see, e.g., [9]). Since JRN - Au,(t) = J RN u,(t) is bounded, u.(t) increases to a 
potential u(t) such that -AZ@) is the limit (in o(A!(RN), Cc(RN))) of -Au&) (see, e.g., [17]). Neces- 
sarily u(t) = EN * u(t) (at least a.e. t). Now, by Lemma 2, if Go = EN * 4, we have 

On the other hand 

8’ 2 u(t) 2 u,(t), Vn, a.e. t 

* go > u;, ijo 2 u”. 

u” 2 uz 2 u,(t), Vn, a.e. t 

* IlO > u(t), u” 2 iJo. 
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Hence t’,, = 8, and p = fi. 
To complete the proof, let us prove (33). By accretivity in L’(RN) (see [5]), for any n, t: 

s RN lu.(t) - fin@)1 G RN J IP, - ii”1 = J I& * 01 - F)I q IP - FI. 
RN RN 

We apply a Fatou-type lemma to finish. 

Proof of Theorem 4. For N > 3, the existence of II is a consequence of the Proposition 3.5. 
Using the particular structure of q(u) = urn, we add an argument to the previous proof in order 
to absorb the cases N = 1,2 and to prove the continuity results for all N. 

Let ,un and un defined as in this proof. The estimates we established are valid for any N. Hence 
(39) holds and a subsequence of u, converges a.e. to u E L”((t, co) x RN) n L”(0, T; L’(RN)) 
solution of (31). Moreover, in this particular case, we have 

T 

li 
ms s SO 

U:(G) da = 0 uniformly in n. 
0 RN 

Indeed, by the Lm-estimate (see [3,21]) 

witha = 
1 

m - 1 + (2/N) 
*=2k 

N’ 

Hence 

T 
Sf 

u;(a) da < CIIpnjI;:d(m-l) ,‘-$!& 
s 

where (m - 1)~ < 1. (41) 
0 RN 

In particular, for all t, PO urn(a) da E L’(RN) and is the limit in I!,,(RN) of So u;(n) da. By Lemmas 2 
and 3, u(t) converges in a(.M(R”), C&RN)) to some fi when t JO. Now, we can pass to the limit in 

u,(t) - p,, = A 
s 

’ u:(c) da in 9(RN) 
0 

and obtain that p = fi. 
Remark that jRN u.(t) = JRN p’. + fRN c1 = j& U(t). H ence u,(t) converges to u(t) in I!(RN) 

for a.e. t and even Vt > 0 by the contraction property. The uniqueness proves the convergence 
of the whole sequence. 

By (39) for any open subset Q relatively compact in (0, co) x RN 

And (41) gives 

IbmII W’.Z(,) G c (42) 

[s 1 
1+&m-l) 

u”(g)& < C. T1-o(m-l). p 
RN 

(43) 

For the uniqueness when N = 1,2, given u, 6 solutions of (31) and (32) we apply Theorem 1 
to u(. + z) (as well as a(. + r)) for any T > 0 to prove that they coincide with the solutions in the 
sense of semigroups. Hence (43) holds for u, ti and we can apply Theorem 1 to u and ii. 



Uniqueness of the solutions of u, - Acp(u) = 0 with initial datum a measure 187 

Now, let p’n converge to /A in r&J@‘), C,(P’)) an d u., u the corresponding solutions. The same 
arguments as above using the estimates (42) and (43) plus the uniqueness result prove that u,(t) 
converges to u(t) in L’(RN). 

Acknowledgements-1 would like to thank all those who participated in the workshop on porous media type equations 
organized by Mike Crandall at the Mathematics Research Center in Madison. I profited from their stimulating talks. 
I am particularly grateful to Emmanuele DiBenedetto for several helpful discussions and to Mike Crandall for all his 
suggestions, advice and encouragement. 

REFERENCES 

1. ARONSON D. G. BBNKAN PH., Rbgularitt des solutions de l’+uation des milieux poreux dans RN, C. r. Acud. Sci., 
Paris, St+. A 288, 103-105 (1979). 

2. BARENIILATT G. I., On some unsteady motions of a liquid and a gas in a porous medium, Prikl, Mar. Mekh. 16, 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 
14. 

15. 

16. 

17. 
18. 
19. 

20. 

21. 

22. 

23. 

67-78 (1952) (Russian). 
BE~NILAN PH.. Operateurs accrbtifs et semi-groupes dans les e\paces Lp(l Q p d co), FrunceJapun Seminar. Tokyo 
(1976). 
BBNLAN PH., Br&~s H. & QANDALL M. G., A semilinear equation in L’(W”), Annali Scu. norm. sup., Piss, Serie 
IV, Vol. II 523-555 (1975). 
B~NILAN PH. & CRANDALL M. G., The continuous dependence on cp of solutions of u, - A&) = 0, Technical 
Summary Repprt No. 1942, M.R.C., University of Wisconsin-Madison. 
Bakz~s H. & C?RANDALL M. G., Uniqueness of solutions of the initial-value problem for u, - A4p(u) = 0, J. Mafh. 
pures uppl. 58, 153-163 (1979). 
B&IS H., Op&ateurs Maximaux Monotones et Semi-groupes de contractions darts les espaces de Hilbert. North- 
Holland, Amsterdam (1977). 
CRANDALL M. G. & PIERRE M., Regularizing effects for u, - Acp(u) = 0, Technical Summary Report No. 2166, 
M.R.C., University of Wisconsin-Madison. 
D~AZ DLAZ G. & Df~z D~AZ I., Finite extinction time for a class of nonlinear parabolic equations, Comm. P.D.E. 4 
(ll), 1213-1231 (1979). 
GILDING G. H. & F%LETIER L. A., The Cauchy problem for an equation in the theory of infiltration, Archs ration. 
Mech. Analysis 61, 127-140 (1976). 
FRJEDMAN A. & KAMIN S., The asymptotic behavior of gas in an n-dimensional porous medium, Trans. Am. math. 
Sot. 262, No. 2, 551-563 (1980). 
KALASHNIKOV A. S., The Cauchy problem in a class of growing functions for equations of unsteady filtration type, 
Vest& Moskov. Univ. Ser. VI Mat. Mech. 6 17-27 (1963) (Russian). 
KAMIN S., Source-type solutions for equations of nonstationary filtration, J. Muth. A~ly~ir Applic. 63 (1978). 
KAMIN S., Some estimates for solutions of the Cauchy problem for equations of a nonstationary filtration, J. dijj$ 
Eqns 20,321-335 (1976). 
KAMIN S., Similar solutions and the asymptotics of filtration equations, Archs r&on. Mech. Anafysis 60, 171-183 
(1976). 
LADYZENSIWA 0. A., ~OLONNIKOV V. A. & U~AL’CEVA N. N., Linear and Quasilinear Equations of Parabolic Type. 
Trans. of Math. Mono., Providence (1968). 
LANDKOF N. S., Founaiztions of Modern Potential Theory, Springer-Verlag, Berlin-Heidelberg-New York (1972). 
PELETIER L. A., The porous media equation (to appear). 
OLEINIK 0. A., On some degenerate quasilinear parabolic equations, Seminare dell’institute Nazionale di Aita 
Mathematics, 1962-1963, pp. 355-371, Odesiri, Gubbio (1964). 
SABININA E. S., On the Cauchy problem for the equation of non-stationary gas filtration in several space variables, 
Dokl. Akad. Nauk SSSR, 136, 1034-1037 (1961). 
VI?.RON L., Coercivite et prop&&s rtgularisantes des semi-groupes non linbires dans les espaces de Banach, Publ. 
Math. Un. Besancon (1977). 
VOL’PERT A. 1. &’ HUDJAEV S. I., Cauchy’s problem for degenerate second order quasi-linear parabolic equations, 
Moth. USSR Sbornik 7, 365-387 (1969). 
ZEL’DOVICH YA. B. & RAIZER Yu. P., Physics of Shock Waves and High-temperature Hyrtodynamic Phenomena, 
Vol. II. Academic Press, New York-London (1969). 


