Publikacje
- J. Dziubański and A. Hulanicki, On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups, Studia Math. 94, 1989,81-95.
- J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math., 58, 1989,77-83.
- J. Dziubański, Asymptotic behaviour of densities of stable semigroups of measures, Prob. Theory and Rel. Fields. 87, 1991, 459-467.
- J. Dziubański, Remark on commutative approximate identities on homogeneous groups, Proceedings AMS 114, 1015-1016, 1992.
- J. Dziubański, Schwartz spaces associated with some nondifferential convolution operators on homogeneous groups, Colloq. Math. 63, 153-161, 1992.
- P. Biler, J. Dziubański and W. Hebisch, Scattering of small solutions to generalized Benjamin-Bona-Mahony equations in several space dimensions, Comm. in Partial Diff. Equations 17, 1737-1758, 1992.
- J. Dziubański, On semigroups generated by subelliptic operators on homogeneous groups, Colloq. Math. 64.2, 215-231, 1993.
- P. Biler, J. Dziubański and W. Hebisch, Asymptotics of solutions to multidimensional generalized Benjamin-Bona-Mahony equation, Proc. conference SAACM-Vol 3, n.l, 1993, 1-15.
- J. Dziubański, W. Hebisch and J. Zienkiewicz, Note on semigroups generated by positive Rockland operators on graded homogeneous groups, Studia.Math. 110 (1994), 115-126.
- J. Dziubański and J. Zienkiewicz, Smoothness of densities of semigroups of measures on homogeneous groups, Colloq. Math. 66.2, 227-242, (1994).
- J. Dziubański, A. Hulanicki and J. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16.
- J. Dziubański and G. Karch, Nonlinear Scattering for some dispersive equations generalizing Benjamin-Bona-Mahony equation, Monatshefte für Math. 122 (1996), 35-43.
- J. Dziubański and Eugenio Hernández, Band-limited wavelets with subexponential decay, Canadian Math. Bull 41.4 (1998), 398-403.
- J. Dziubański, Triebel-Lizorkin spaces associated with Laguerre and Hermite expansions, Proc. Amer. Math. Soc. 125.12 (1997), 3547-3554.
- J. Dziubański, A note on Schrödinger operators with polynomial potentials, Colloq. Math. 78 (1998), 149-161.
- J. Dziubański and Jacek Zienkiewicz, Hardy spaces associated with some Schrödinger operators, Studia Math. 126 (1997), 149-160.
- J. Dziubański, Atomic decomposition of Hp spaces associated with some Schrödinger operators, Indiana University Mathematics Journal 47 (1998), 75-98.
- J. Dziubański and J. Zienkiewicz, Hardy space H1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Revista Mat. Iberoamericana 15 (1999), 279-296.
- J. Dziubański, Spectral multiplier theorem for H^1 spaces associated with some Schrödinger operators, Proc. Amer. math. Soc. 127 (1999), 3605-3613.
- J. Dziubański, Spectral multipliers for Hardy spaces associated with Schrödinger operators with polynomial potentials, Bull. London. Math. Soc. 32 (2000), 571-581.
- Addendum to the paper "Spectral multipliers for Hardy spaces associated with Schrödinger operators with polynomial potentials".
- J. Dziubański, Specrtal multiplier theorem for H1 spaces associated with Schrödinger operators with potential satisfying reverse Hölder inequality, Ill. J. Math. 45.4 (2001), 1301-13133.
- Addendum to the paper "Spectral multiplier theorem for H^1 spaces associated with Schrodinger operators with potentials satisfying a reverse Hölder inequality"
- J. Dziubański and J. Zienkiewicz, Hp spaces for Schrödinger operators, Fourier Analysis and Related Topics, Banach Center Publications, volume 56, Institute of Mathematics Polish Academy of Sciences, Warszawa (2002), 45-53.
- E. Damek, J. Dziubański, A. Hulanicki, J. Torrea, Pluriharmonic functions on symmetric tube domains with BMO boundary values, Colloq. Math. 94 (2002).
- J. Dziubański and J. Zienkiewicz, Hp spaces associated with Schrödinger operators with potentials from reverse Holder classes, Colloq. Math. 98.1 (2003), 5-38.
- J. Dziubański and J. Zienkiewicz, Hardy spaces H1 for Schrödinger operators with certain potentials, Studia Math. 164 (2004), 39-53.
- J. Dziubański, C. Molitor-Braun, and J. Ludwig, Functional calculus in weighted group algebras, Revista Mat. Compl. 17 (2004), 321-357.
- J. Dziubański and J. Zienkiewicz, Hardy spaces H1 for Schrödinger operators with compactly supported potentials, Annali Mat. Pura Appl. 184, (2005) 315--326.
- J. Dziubański, G. Garrigos, T. Martinez, J. Torrea, J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying reverse Hölder inequality, Mat. Z. 249 (2005), 329-356.
- J. Dziubański, Note on $H^1$ spaces related to degenerate Schrödinger operators, Ill. J. of Math. Math. 49.4, (2005), 1271--1297.
- J. Dziubański, Hardy spaces associated with semigroups generated by Bessel operators with potentials, Houston J. Math. 34.1 (2008), 205-234.
- Addendum to the paper " Hardy spaces associated with semigroups generated by Bessel operators with potentials, Houston J. Math. 34.1 (2008), 205-234 ".
- J. Dziubański, Hardy spaces for Laguerre expansions, Constructive Approximation 27 (2008), 269-287.
- J. Dziubański and P. Głowacki, A note on Sobolev spaces related to Schrödinger operators with polynomial potentials, Mathematische Zeitschrift 262 (2009), 881-894.
- E. Damek, J. Dziubański, Ph. Jaming, and S. Perez-Esteva, Distributions that are convolvable with generalized Poisson kernel of solvable extensions of homogeneous Lie groups, Mathematica Scandinavica, 105 no 1, (2009), 31-65.
- J. Dziubański, Atomic decomposition of Hardy spaces associated with certain Laguerre expansions, J. Fourier Analysis and Applications, 15 (2009), no 2, 129-152.
- J. Betancor, J. Dziubański, and J. L. Torrea, On Hardy spaces associated with Bessel operators, Journal d'Analyse Mathematique, 107 (2009), 195-219.
- J. Dziubański, M. Preisner, Remarks on spectral multiplier theorems on Hardy spaces associared with semigroups of operators, Revista de la Union Matematica Argentina, 50 , numero 2 (2009) , 201-215.
- J. Dziubański, M. Preisner, Multiplier theorem for Hankel transform on Hardy spaces, Monatshefte für Mathematik 159 (2010), 1-15.
- J. Betancor, J. Dziubański, G. Garrigos, Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions, Tohoku Math. J. (2)., 62 (2010), no. 2, 215–231.
- J. Dziubański, M. Preisner, Riesz transform characterization of Hardy spaces associated with Schrödinger operators with compactly supported potentials, Arkiv för Matematik., 46 number 2 (2010), 301-310.
- J. Dziubański, M. Preisner, On Riesz transform characterization of H^1 spaces associated with some Schrödinger operators, Potential Analysis, 35 (2011), 39-50.
- J. Dziubański, M. Preisner, Marcin, Hardy spaces related to Schrödinger operators with potentials which are sums of Lp-functions. J. Math. Anal. Appl. 396 (2012), no. 1, 173–188.
- J. Dziubański and J. Zienkiewicz, On Hardy spaces associated with certain Schrödinger operators in dimension 2, , Revista Mat. Iberoamericana, 28 (2012), 1035-1060.
- J. Dziubański, M. Preisner, B. Wróbel, Multivariate Hörmander-type multiplier theorem for the Hankel transform. J. Fourier Anal. Appl. 19 (2013), no. 2, 417–437.
- J. Dziubański and J. Zienkiewicz, On isomorphisms of Hardy spaces associated with Schrödinger operators, J. Fourier Anal. Appl. 19 (2013), 447-456.
- J. Dziubański and J. Zienkiewicz, A Characterization of Hardy Spaces Associated with Certain Schrödinger Operators, Potential Anal 41 (2014), 917–930.
- Jean-Philippe Anker, Néjib Ben Salem, Jacek Dziubański, Nabila Hamda, The Hardy Space H^1 in the Rational Dunkl Setting, Constructive Approximation, 42 (2015), 93-128.
- J. Dziubański, Riesz Transforms Characterizations of Hardy Spaces H^1 for the Rational Dunkl Setting and Multidimensional Bessel Operators , Journal of Geometric Analysis 26 (2016), 2639-2663.
- J. Dziubański and K. Jotsaroop, On Hardy and BMO Spaces for Grushin Operator J. Fourier Anal. Appl. 22 (2016), 954-995.
- J. Dziubański, M. Presiner, L. Roncal, P. Stinga, Hardy spaces for Fourier-Bessel Expansions, Journal d’Analyse Mathematique, Vol. 128 (2016), 261-287.
- J. Dziubański and B. Wróbel, Strong continuity on Hardy spaces , Journal of Approximation Theory, Volume 211, November 2016, 85–93.
- J. Dziubański and M. Preisner, Hardy spaces for semigroups with Gaussian bounds, Annali di Matematica Pura ed Applicata, 197 (2018), Issue 3, pp 965–987 ,
-
J. Dziubański and A. Hejna, Remarks on localized sharp functions on certain sets in R^n , Monatsh. Math. 185 (2018), pp 397–413.
-
K. Bogdan, J. Dziubański and K. Szczypkowski, Sharp Gaussian Estimates for Heat Kernels of Schrödinger Operators, Integral Equations and Operator Theory 91 (2019).
-
Anker, J.-Ph., Dziubański, J., Hejna, A. Harmonic functions, conjugate harmonic functions and the Hardy space H1 in the rational Dunkl setting, Journal of Fourier Analysis and Applications 25 (2019), no. 5, 2356-2418.
-
J. Dziubański, A. Hejna, Remark on atomic decompositions for Hardy space H1 in the rational Dunkl setting, Studia Mathematica.
-
J. Dziubański, A. Hejna, Hörmander's multiplier theorem for the Dunkl transform, Journal of Functional Analysis 277 (2019), 2133-2159.
-
J. Dziubański, A. Sikora, Lie group approach to Grushin operators, J. Lie Theory 31 (2021), no. 1. 1-14.
-
J. Dziubański, A. Hejna, On semigroups generated by sums of even powers of Dunkl operators, Integral Equations and Operator Theory, 93 (2021), no. 3, paper no 31.
-
J. Dziubański, A. Hejna, Upper and lower bounds for the Littlewood-Paley square functions in the Dunkl setting, Studia Math. 262 (2022), no. 3, 275-303.
-
J. Dziubański, A. Hejna, Singular integrals in the rational Dunkl setting, Rev. Mat. Complut. 35 (2022), no. 3, 711-737.
-
J. Dziubański, A. Hejna, Upper and lower bounds for the Dunkl heat kernel, Calc. Var. Partial Differential Equations 62 (2023), no. 1, paper no. 25.
-
J. Dziubański, A. Hejna, Remarks on the Dunkl translations of non-radial kernels, Journal of Fourier Analysis and Applications, 29 (2023), no. 4, paper no. 52.
-
J. Dziubański, A. Hejna, A note on commutators of singular integrals with BMO and VMO functions in the Dunkl setting, Math. Nachr. 297 (2024), no. 2, 629–643.