Introduction
Instytut Matematyczny Uniwersytetu Wrocławskiego
Pl. Grunwaldzki 2/4 50-384
Wrocław, Poland
room: 104
phone: (+48) 71 375 7439
e-mail: piotr.dyszewski(at)math.uni.wroc.pl
office hours: Tuesdays 12-13, Thursdays 11-12.
I am a PhD student in probability theory at the Instytut Matematyczny Uniwersytetu Wrocławskiego. My advisor is Dariusz Buraczewski and my current research concerns models related to the smoothing transform.
Recent scientific activity
Thin tails of fixed points of the nonhomogeneous smoothing transform
posted 23 Oct 2015, 16:51 by Piotr Dyszewski [ updated 25 Dec 2015, 14:13 ]
An article written together with Gerold Alsmeyer available on arXiv.
Abstract:
For a given random sequence (C,T1,T2,…) with nonzero C and a.s. finite number of nonzero Tk, the nonhomogeneous smoothing transform S maps the law of a real random variable X to the law of ∑k≥1TkXk+C, where X1,X2,… are independent copies of X and also independent of (C,T1,T2,…). This law is a fixed point of S if the stochastic fixed-point equation (SFPE) X=d∑k≥1TkXk+C holds true, where =d denotes equality in law. Under suitable conditions including EC=0, S possesses a unique fixed point within the class of centered distributions, called the canonical solution to the above SFPE because it can be obtained as a certain martingale limit in an associated weighted branching model. The present work provides conditions on (C,T1,T2,…) such that the canonical solution exhibits right and/or left Poisson tails and the abscissa of convergence of its moment generating function can be determined. As a particular application, the right tail behavior of the Quicksort distribution is found.
Talks given on the subject:
|
Iterated random functions and slowly varying tails
posted 9 Sep 2015, 22:55 by Piotr Dyszewski [ updated 26 Dec 2015, 14:47 ]
Paper accepted to Stochastic Processes and their Applications (arXiv)
Abstract:
Consider a sequence of i.i.d. random Lipschitz functions {Ψn}n≥0. Using this sequence we can define a Markov chain via the recursive formula Rn+1=Ψn+1(Rn). It is a well known fact that under some mild moment assumptions this Markov chain has a unique stationary distribution. We are interested in the tail behaviour of this distribution in the case when Ψ(t)≈At+B. We will show that under subexponential assumptions on the random variable log+(A∨B) the tail asymptotic in question can be described using the integrated tail function of log+(A0∨B0). In particular we will obtain new results for the random difference equation Rn+1=An+1Rn+Bn+1.
Talks given on the subject:
|
Kombinatoryka i topologia w przestrzeniach Banacha
posted 15 Nov 2014, 14:17 by Piotr Dyszewski [ updated 15 Nov 2014, 14:17 ]
Notatki z wykładu (www) prowadzonego przez prof. Grzegorza Plebanka.
|
| Attachments: KiT.pdf
Branching random walk in the boundary case
posted 2 Nov 2014, 18:19 by Piotr Dyszewski [ updated 13 Mar 2015, 12:24 ]
Materiały z odczytu na seminarium zakładowym (www)
Abstrakt:We consider one-dimensional branching random walk in so-called boundary case. We are interested in the additive martingale $(W_n)$ associated with this branching random walk and we will show that $(\sqrt{n}W_n)$ converges in probability to a positive limit. The talk is based mostly on the paper by Aidekon and Shi [The Annals of Probability, 42, (2014)]. |
| Attachments: Branching_final.pdf
Półgrupy operatorów i równania ewolucji
posted 30 Mar 2014, 18:39 by Piotr Dyszewski [ updated 30 Mar 2014, 18:39 ]
Notatki z wykładu (www) prowadzonego przez prof. Piotra Bilera.
|
| Attachments: Polgrupy.pdf
Grupy Liego
posted 4 Dec 2013, 15:53 by Piotr Dyszewski [ updated 4 Dec 2013, 15:54 ]
Notatki do referatu na seminarium przeglądowym.
|
| Attachments: Algebry_Liego_final.pdf
Miary ryzyka w matematyce finansowej i ubezpieczeniowej
posted 25 Nov 2013, 22:24 by Piotr Dyszewski [ updated 27 Nov 2013, 19:57 ]
Notatki do referatu na Seminarium przeglądowym
|
| Attachments: Miary.pdf
Nieliniowe Równania Paraboliczne
posted 14 Oct 2013, 11:00 by Piotr Dyszewski [ updated 2 Dec 2013, 22:11 ]
Notatki do referatów (w języku angielskim).
|
Egzamin magisterski
posted 19 Sep 2013, 21:25 by Piotr Dyszewski [ updated 19 Sep 2013, 21:44 ]
Zagadnienia obowiązujące na egzaminie magisterskim dla specjalności "Zastosowania rachunku prawdopodobieństwa i statystyki".
|
Nieliniowa analiza funkcjonalna
posted 1 Sep 2013, 17:20 by Piotr Dyszewski [ updated 1 Sep 2013, 17:22 ]
Rozwiązania przydzielonych zadań.
|
Recent teaching activity
Wszelkie notatki i materiały sporządzone przeze mnie podczas studiów można znaleźć tutaj
Konsultacje w semestrze zimowym 2015/2016: Wtorki 12-13, Czwartki 11-12. |
Ćwiczenia z rachunku prawdopodobieństwa 1 B [semestr letni 2014/2015]
Laboratoria z wyceny i analizy instrumentów finansowych I [semestr letni 2013/2014]
Wtorki, 17:05-18:35, sala 410
|
XXII Zimowa Szkoła Matematyki (2012)
Materiały z Ligi zadaniowej przeprowadzonej podczas XXII Zimowej Szkoły Matematyki (www)
|
Uniwersyteckie kółka matematyczne w Jeleniej Górze
Materiały do zajęć prowadzonych w ramach Uniwersyteckich kółek matematycznych w Jeleniej Górze
|