Zapraszamy na sesję naukową Oddziału Wrocławskiego Polskiego Towarzystwa Matematycznego, która odbędzie się w piątek 4 marca 2016, w godzinach 17 – 19, w sali HS Instytutu Matematycznego Uniwersytetu Wrocławskiego, pl. Grunwaldzki 2/4.
W programie dwa odczyty pod wspólnym tytułem:
There and back again: from the Borsuk-Ulam theorem to quantum spaces.
Odczyt 1 (50 min.): Tatiana Shulman (IMPAN)
Odczyt 2 (50 min.): Piotr M. Hajac (IMPAN / University of New Brunswick)
Odczyty będą wygłoszone po angielsku.
Dla uczestników sesji dostępny będzie niewielki parking na zapleczu budynku Instytutu Matematycznego. Wjazd od ul. Polaka. Przez domofon przy szlabanie trzeba poinformować p. portiera, że jest się uczestnikiem sesji PTM.
Streszczenie:
Assuming that both temperature and pressure are continuous functions, we can conclude that there are always two antipodal points on Earth with exactly the same pressure and temperature. This is the two-dimensional version of the celebrated Borsuk-Ulam Theorem which states that for any continuous map from the n-dimensional sphere to n-dimensional real Euclidean space there is always a pair of antipodal points on the sphere that are identified by the map. Our quest to unravel topological mysteries in the Middle Earth of quantum spaces will begin with gentle preparations in the Shire of elementary topology. Then, after riding swiftly through the Rohan of C*-algebras and Gelfand-Naimark Theorems and carefully avoiding the Mordor of incomprehensible technicalities, we shall arrive in the Gondor of compact quantum groups acting freely on unital C*-algebras. It is therein that the generalized Borsuk-Ulam-type statements dwell waiting to be proven or disproven. To end with, we will pay tribute to the ancient quantum group SUq(2), and show how the proven non-trivializability of Pflaum's SUq(2)-principal instanton bundle is a special case of two different noncommutative Borsuk-Ulam-type conjectures. Time permitting, we shall also explain how pulling back associated noncommutative vector bundles allows us to extend the non-trivializability result from the Pflaum quantum instanton bundle to an arbitrary finitely iterated equivariant join of SUq(2) with itself. The latter is a quantum sphere with a free SUq(2)-action whose space of orbits defines a noncommutative quaternionic projective space. (Based on joint work with Paul F. Baum, Ludwik Dabrowski and Tomasz Maszczyk.)